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This work proposes to authenticate offline signatures using a 
Case-Based Reasoner (CBR). The case base serves as a repository 
of sets of genuine signatures for which a central point on the n-
dimensional global feature space is preserved along with the 
Inter-Quartile Range (IQR). These signatures are paired off to 
perform Dynamic Time Warping (DTW) comparison on their 
respective contours. Metrics generated from the global features 
and DTW values for the preserved signatures are utilized to 
predict authenticity of test signatures. Philosophically,  CBR is a 
good classifier since it does not need any training by forgery 
models. The overall accuracy of the CBR classifier is maintained 
at a reasonably high value as a larger False Rejection Rate (FRR) 
is compensated by  a tight False Acceptance Rate (FAR)  value 
when compared with a MLP classifier. Both the classifiers have 
been tested on a standard offline signature database as well as 
one collected and prepared during the current research. 

Keywords— Case-Based Reasoner; Dynamic Time Warping; 
False Acceptance Rate; False Rejection Rate 

1. INTRODUCTION  
Offline signatures are still the most prevalent method of 

biometric authentication. Often, the checking is done 
manually and generally experts are not called in unless legal 
controversies occur. Manual detection of fraud presents 
several complications. There remains ground to suspect 
personal bias. An organization may suffer loss of face if there 
is genuine cause for change in writing style due to the ageing 
process of the signatory and/or for a disease-induced spastic. 
An expert system, on the other hand, can safely be made 
scapegoat without jeopardizing goodwill. 

The process of signature verification can be posed as a 
problem to determine whether a particular signature is indeed 
written by the person claiming to be its author and, if not, 
whether attempts to forgeries can be established. The idea of 
applying Case-based Reasoning (CBR) and Dynamic Time 
Warping (DTW) techniques to solve this problem has been 
initially stimulated by studying pioneering works in these 
fields [1] [2]. Yoshimura and Yoshimura (1997)[3] proposed a 
DTW based signature verification which uses DTW to segment 
the signature into a fixed number of components and then 
compute a component wise dissimilarity measure. In [4] 
Shankar and Rajagopalan propose a modified DTW algorithm 

that takes into account stability of various components of the 
signature for enhanced performance in verification. 

We employ here a CBR which records a preliminary set of 
authentic signatures of each person and incorporates values and 
techniques that help to detect fraud with sufficient accuracy on 
subsequent presentation of offline signatures . Our choice of 
classifier was guided by some advantages of the CBR - it does 
not need any separate training with plausible forged sets. 
Additionally, since each case preserves the metrics derived 
from a definite number of  pre-recorded signatures of a 
particular person, there is no question  of scalability associated 
with the growth of the total dataset. 

In the next section 2 is discussed the methodologies used to 
extract specific knowledge from the signature images of each 
individual and utilize the same to authenticate a new signature 
supposed to belong to that individual. The steps involved in  
preprocessing  the signature images are detailed in the first 
subsection. The  detailed procedure, for preserving  genuine 
signatures and their metrics in the case base and utilization of 
these while  evaluating a  test signature, is discussed in the 
remaining portion of this section. 

To benchmark our system we have tested the signature data 
on another classifier : the MLP Network. This neural network 
was designed with the help of the standard data mining 
software WEKA [12]. Section 3 describes the details of the 
experiments performed to assess our system. Here we also 
present the outcome of the experiments in both tabular and 
graphical representation. This helps us to analyze the efficacy 
of the system. In the last section 4 is recorded the concluding 
remarks.  Some future scopes of improving the system is also 
indicated here. The Reference at the end lists the foundation 
works on which we based our research. 

   2.    METHODOLOGY 

2.1  Preprocessing of Signature Images 
The following steps were required to prepare the raw 

signature images and save them in a format from which 
features needed for classification could be extracted properly :  

Image Binarization : From the gray scale scanned image, 
the global image threshold was calculated using Otsu’s 
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method[5] which performs a clustering based image thresh-
holding.  

Noise Reduction : This step removes single white pixel on 
black background or single black pixel on white background. 
The technique employs a 3x3 mask to the image such that if 
the number of the 8-neighbors of a pixel, that have the same 
color as the central pixel, is less than two, then the color of the 
central pixel is reversed. 

Minimal Area Cropping : The binarized image was 
scanned horizontally and vertically to obtain first the leftmost 
and rightmost,  and then the topmost and bottommost black 
pixels respectively. The image is cropped with respect to a 
rectangular window, known as the minimum bounding box, 
passing through these  four pixels.  

Width Normalization : From the minimum bounding box of 
the signature we obtain the pure width of the signature. Then 
all authentic signatures are width normalized using average 
pure width as the scaling factor, while preserving the aspect 
ratio of the signatures. 

Skeletonization : The skeletonizing technique used here is 
called Medial axis transformation introduced by Blum [13] 
that produces a unique skeleton for a given object by 
removing pixels on the boundaries of the object, without 
allowing  the object to break apart. 

 
 
Figure 1.        Signature Image before  and after Skeletonization 

2.2 Feature Extraction 
In our work we considered a set of 20 global features[6] [7] 

[8]. Global features categorize the signature as a whole. These 
features are usually extracted from the pixels that lie within the 
region circumscribing the signature image. Some of the 
advantages associated with global features are that they are 
easily extractable, less sensitive to noise as small distortions in 
isolated regions of signature does not cause a major impact on 
the total image, and they provide information about the 
structural aspects of the signature and distribution of pixels 
across the signature image. Moreover, as they are dependent on 
overall position alignment,  these can easily reflect style 
variations in case of forgeries. Following is a list of global 
features extracted and utilized by us : Pure Height, Pure Width, 
Aspect Ratio, Image Area, Signature Height, Vertical Center, 

Horizontal Center, Maximum Vertical Projection, Maximum 
Horizontal Projection, Vertical Projection Peaks, Horizontal 
Projection Peaks, Baseline Shift, Number of Edge Points, 
Number of Cross Points, Number of Closed Loops, Top 
Heaviness, Horizontal Dispersion,  Mean Ascender Height, 
Mean Descender depth, and Interior to Exterior pixel ratio. 

Here each signature image Sk can be represented as a 
feature vector, Fk = (fk1, fk2, …,fk20), and the Euclidean distance 
between two signature images Si and Sj is given by 

                                         20 

Dist(Si,Sj) = ( �   (fim – fjm)2 ) ½                        (1) 
                                              m=1 

2.3 Dynamic Time Warping for signature verification 
The DTW algorithm has been widely used in speech 

processing, bio-informatics and handwriting communities to 
match one-dimensional sequences. It uses dynamic 
programming to find an optimal match by allowing stretching 
and compression of sections of the sequences, the primary 
objective being non-linearly aligning one or more observation 
sequences or feature vectors before they are compared. It finds  
a final alignment between two time series data, X=x1, x2, x3, 
...,xM and  Y=y1, y2, y3,...,yN,  M and N being the length of the 
two series respectively, under some constraints. In this work, 
DTW has been used to find an optimal distance between two 
signatures’ contour lines. (Figure 2 below).  

 

 

 

 

Figure 2.  A sample signature with the upper and lower contours 
separated and together. 

Since there are no time sequences associated with an offline 
signature, we have generated sequences from the vertical 
offsets of the maxima and minima of the upper and lower 
contour of a signature against their horizontal positions. 
Tentatively similar  sequences of  vertical heights are 
compared between two signatures by  aligning their cumulative 
distance from one another as they grow, one along the vertical 
axis and the other along the horizontal axis of an M x N grid.  
Both sequences start from bottom left corner of the grid, and in 
each cell the cumulative  DTW distance between the 
corresponding elements of the two sequences is placed. A 
greedy algorithm determines the best match path through the 
grid, as near to the diagonal as possible, minimizing the total 
distance between the sequences using a non linear mapping. 
The DTW distance D(i,j) is calculated and the grid populated 
using dynamic programming techniques, starting from location 
i=1 and j=1 and assuming the grid position at (1,1) to be 
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already filled up with the Manhattan distance between the 
corresponding x1 and y1 values. The ultimate DTW distance 
between the two sequences is thus obtained using the following 
recurrence relation  : 

D(i, j) = D(1,j-1) + d(x1,yj),  at i=1  and  j>1, 
           = D(i-1,j) + d(xi,y1),   at i >1 and  j=1, 
           = min { D(i,j-1), D(i-1,j), D(i-1,j-1)} + d(xi ,yj ),     
                                               at i>2  and  j>2                        (2) 

where 
d(xi ,yj )  is the Manhattan distance between the i-th element of 

the x-series and  j-th element of the y-series data, 
and 
D(i, j)  is the cumulative DTW distance so far calculated 

and occupying grid location (i , j ). 

D(M,N) thus gives us the DTW distance between the two 
sequences. 

As outlined by Sakoe and Chiba [10], the major constraints 
of the DTW algorithm  while calculating the nature of the 
acceptable paths through the grid, namely monotonic 
condition, continuity condition, boundary condition, warping 
window condition and slope constraint condition, were all 
considered during optimal path extraction. 

2.4   Working Procedure 
Each case of ten genuine signatures per person is utilized 

for predicting the authenticity of a test signature. Feature 
deviations are augmented by  the Dynamic Time Warping 
distance measured for local maxima and minima in both the 
upper and lower contours of the test signature being compared 
with each of the authentic signatures stored in the case. 
Statistical dispersion of both are calculated. A set comprising 
of the median and IQR value is measured in terms of the 
global features for the test signature. A second such set is 
determined by subjecting the test specimen to a central 
tendency measure with respect to the DTW scores obtained as 
stated above. These two sets mark the basis of the components 
on which the authenticity of a test signature depends. A value 
is obtained by generating the  weighted sum of the absolute 
difference of the median distance of the test signature  from 
the genuine specimens for both these components when 
compared with their respective IQRs. If this sum value falls 
within a predetermined threshold limit, the test signature is 
predicted to be genuine, otherwise it is assumed to be a 
forgery. The procedure is explained as follows: 

• Every authentic signature is assumed to be a point in 
a 20 dimensional feature-space. 

• Let � be the set of genuine specimens in a case, with 
say n=|�|. Euclidean distance between each pair of 
signatures Si,Sj � � in the feature space is computed 
according to Eqn. (1)  and these nC2  distance values 
are utilized to obtain the median distance value Mftr 
and the inter quartile range IQRftr . • For each of these signature pairs Si,Sj � �, the upper 
and lower profiles are extracted. Next the dynamic 

time warping (DTW) distance between the upper 
profile local maxima sequences of signature Si and Sj  
is calculated and stored in Duprij according to Eqn. 
(2) . Similarly, DTW distance between the lower 
profile local minima sequences of signature Si and Sj 
are calculated and stored in Dlwrij. These two values 
Duprij and Dlwrij are summed up for each  pair of 
signatures Si and Sj    where i, j = 1,2,…,n and i � j 
and is accumulated to generate the median Mdtw  and 
the inter quartile distance range IQRdtw from the nC2  
total DTW distance values. 

• These four parameters Mftr, IQRftr, Mdtw and IQRdtw along with the signatures and their integer scores are 
all preserved in the case for further processing.  

• When a new test signature T arrives, global features 
are extracted from it after preprocessing the image. 
Euclidean distance between feature set of T and each 
genuine signature Si � �,        i = 1,2, …, n in the 
case is computed and the median distance MTftr 

 for 
the test signature is obtained. 

• DTW distances Dupri 
 and Dlwri for the upper profile 

local maxima sequences and lower profile local 
minima sequences of T from the corresponding 
sequences for each genuine signature in the case  are 
obtained. The total DTW distance, DTWTSi  between 
T and Si ,  i = 1,2, …, n, is calculated as sum of 
Dupri 

 and Dlwri  and the median of all such 
distances is computed in  MTdtw. 

• The test signature T is classified as a genuine 
signature if it satisfies the following inequality:-  

� * DTW_Comp + � * FTR_Comp  � 1                   (3) 

where, 
DTW_Comp = (abs(MTdtw - Mdtw ) / � * IQRdtw ), 
FTR_Comp = ( abs( MTftr  - Mftr ) / 	 * IQRftr ), 
� is the DTW similarity weight with value ranging 
between 0 and 1, 
� is the feature similarity weight, such that � = 1 – �, 
� is the allowed percentage of IQRdtw with value 
ranging between 0.1 and 1, 
	 is the allowed percentage of IQRftr 

 with value 
ranging between 0.1 and 1.5. 

 The above four pre-defined authentic bounds �, �, �, 
and 	 help detect forgery. In our experiments, we have varied 
these values at a rate of 0.1 gradation to produce all possible 
combinations and detected the bound values for which  the 
total error was lowest for both datasets. In the next section we 
have recorded the results for the lowest total error positions 
and analyzed the performance of the CBR classifier.   

3. EXPERIMENTAL RESULTS AND PERFORMANCE ANALYSIS 

3.1   Description of the Datasets 
Two sets of data have been utilized in our experiments. 

The first is a standard database MCYT Bimodal Biometric 
Database (MCYT- SignatureOff-75) of off-line signatures with 
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15 genuine and 15 skilled forgeries for 75 persons [9] scanned 
at a resolution of 300 dpi. The second one is our own  
collection of off-line signatures prepared by us over a period 
of one and half year containing twenty authentic signatures for 
75 persons. To check the system's performance while 
detecting forgery, we added three different categories of 
forged signatures for each of these persons, namely  Random 
Forgery,  Unskilled Forgery, Skilled Forgery[11].  

Our forged set consists of 10 random forgeries, 5 unskilled 
and 5 skilled forgeries for each of the 75 persons. We shall 
henceforth designate these two data sets as Dataset1 and 
Dataset2.  

All the signatures in Dataset2 were collected on paper 
using black ball point pens with 0.5 micron tip points. By 
strategy, the collection procedure was phased out over a  
duration of a year and a half. Out of the twenty genuine 
signatures, ten were set aside for building up the initial case 
base. The remaining ten authentic signatures and the set of 
forged signatures were used to assess the classifier accuracy. 
All the signatures were scanned at a resolution of 200 dpi to 
obtain gray scale images.  

3.2 Tables and Graphs depicting result 
In Figures 3 and 4, we plot the FAR, FRR and the Total 

Error (FAR+FRR), obtained for the lowest total error 
condition(/s) selected from all combinations of values of �, �, 
and �, and for a series of values of 	, for both Dataset1 and 
Dataset2 respectively. The particular values of � and � were 
found to be 0.7 and 0.3 for both datasets. The � value was 
found to be 0.6 for Dataset1 and 1.0 for Dataset2. In each 
case, the error values are plotted along the vertical axis 
increasing from 0 upwards, against the 	 values plotted along 
the horizontal axis varying between  0.1 and 1.5 from left to 
right.  

We find the Equal Error Rate (EER) position with respect 
to the point where the FAR and FRR values are exactly the 
same, i.e. at the intersection of the FRR and FAR curves. We 
also find out the Lowest Total Error position on the Total 
Error curve. 

 
Figure 3.           FAR, FRR, Total Error  and EER values for Dataset1 

  
 

 

Figure 4.         FAR, FRR, Total Error  and EER values for Dataset2 

The values marked on the above graphs have been 
tabulated  for the different types of forgeries in Table I below 
for both datasets. The �, �, � and 	 values, found for the lowest 
total error values obtained by varying DTW and feature value 
dispersions for different percentage participation of their 
respective scores using Eqn. (3), are also indicated in the 
Figures 3 and 4 above and Table I below. 

TABLE I.  EER  AND LOWEST ERROR  VALUES  

Data 
Set 

�=0.7, �=0.3, and �=0.6(Dataset1) ,1.0(Dataset2) 

Forgery  EER%  � EER 
Lowest Error 

�  
1 Alltype  29.07 0.4 1.2 

2 Alltype 19.51 0.4 

0.8 
2 Skilled 24.32 0.3 

2 Unskilled 18.61 0.41 

2 Random 14.29 0.56 

  We have further compared the performance of two 
classifiers, MLP and CBR, in terms of accuracy. In Table II 
below are given the percentage of signatures correctly 
identified as genuine or fraud for both sets of data and for the 
two classifiers MLP and CBR. The CBR system was assessed 
in each case with the �, �, � and 	 value settings at the Lowest 
Total Error position on the Total Error curve as obtained from 
the Figures 3 and 4 and Table I above. The corresponding 
bargraphs for Dataset1 is shown in Figure 5 next. 

TABLE II.  COMPARISON  OF ACCURACY %  :  MLP  AND CBR 

 
Dataset Classifier Model Overall Authentic 

Alltype 
Forgery  

1 CBR 74 83.2 64.8 
1 MLP 71.6 88.26 54.93 
2 CBR 81.55 90.13 75.24 
2 MLP 77.18 87.067 63.45 
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Figure 5.                      Accuracy BarGraph for Dataset1 

 In Figure 6 below are shown the accuracy percentage of 
the different categories of forged and genuine as well as the 
overall accuracy of data in the second set. The values of the 
different types of forgeries : the skilled, unskilled and random, 
are given in Table III below, the CBR values being shown at 
the �, �, � and 	 at lowest total error as indicated in Table I.   

 
Figure 6.                      Accuracy BarGraph  for Dataset2  

TABLE III.  FORGERY DETECTION ACCURACY FOR DATASET2 

Model 
Alltype  
Forgery 

Skilled 
Forgery 

Unskilled 
Forgery 

Random 
Forgery 

CBR 75.24 65.33 77.067 83.33 
MLP 63.45 74.67 46.67 69 

 

 As is evident from the above figures and tables, the 
overall accuracy percentage as well as the total fogery 
detection rate is perceptably higher in case of CBR for both 
the datasets under observation. The recognition rate for the 
more common types of forgeries, i.e. the unskilled and the 
random varieties, is also high for our Dataset2. The only 
variety of forgery available with Dataset1 is skilled. We found 
an interesting negative correlation between the detection of the 
authentic signatures and the skilled forgeries, which supports 
our view that so far CBR imitates the human form of 
knowledge inference – a signature, perceptibly different from 
the preserved ones, has got a high chance of rejection even if 

it is authentic, while a skillfully forged one may be accepted if 
it is a close enough copy.  

 The percentage of accuracy in detecting fraud, which 
left ground for dissatisfaction since higher rates have been 
claimed by others employing DTW techniques [14], were 
slightly enhanced by introducing additional grid feature 
vectors in the form of pixel densities and angle values [15] for 
the CBR classifier. The modified results have been displayed 
in the following tables. 

TABLE IV.  RESULT ENHANCED BY PIXEL DENSITY AND ANGLE VALUES 

 
Dataset Classifier Model Overall Authentic 

Alltype 
Forgery  

1 CBR 74.13 83.2 67.2 
1 MLP 68.26 88 48.4 
2 CBR 85.02 90.13 79.42 
2 MLP 82 93.067 66.36 

 

TABLE V.  FORGERY  RESULTS ENHANCED FOR DATASET2 

 
Model 

Alltype 
Forgery 

Skilled 
Forgery 

Unskilled 
Forgery 

Random 
Forgery 

CBR 79.42 65.6 81.06 91.6 
MLP 66.36 79.43 46 73.66 

 
 The CBR results for this enhanced model are being 

shown at �=0.4, �=0.6 for both Datasets, and for  �=0.6, and 
	=0.7 for Dataset1 and �=0.8, and 	=1.3  for Dataset2 at 
lowest total error position. 

 The MLP values shown in Tables IV and V have been 
obtained by incorporating the same set of pixel density and 
angle value features, as mentioned before, on both the 
datasets. FRR here decreased but at the cost of  slightly 
increased FAR in case of unskilled variety of forgery for 
Dataset2. Cross-validation was omitted as, even for a 3-fold 
validation, the number of training samples for skilled and 
unskilled were too small to avoid overfitting. Moreover, we 
wanted both the classifiers to start with the same handicap by 
presenting them with identical model-building and testing set 
from the original signatures of each person.  But we found 
that, although MLP enjoys the benefit of  extra training in the 
form of sample forged signature sets, addition of grid 
attributes seem to have detrimental effect on its performance 
for the standard database. 

4.  CONCLUSIONS  AND  FUTURE SCOPE 
The experimental results with our database  indicate that 

MLP can better authenticate original signatures, although our 
CBR system can be tuned to perform appreciably well - albeit 
at the cost of raising the FAR for skilled forgeries. At an 
optimal tuning, CBR outperforms MLP by rejecting the false 
more accurately. The overall performance of the CBR was 
found to be higher for both the datasets used by us. It was 
further enhanced later by introducing some more feature 
vectors at grid level.  

In case of MLP, lowering of accuracy in detecting overall 
fraud is aggravated due to the intrinsic variance of form 
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suffered by training samples for forged signatures. For CBR, 
end-comparison by DTW, which works directly on image 
data, leads to easier detection of unskilled and random types 
of forgery. DTW, being a comparison technique between two 
inputs, is not applicable at any stage of MLP. 

Another prominent advantage of CBR lies in the fact that it 
needs no prior training by forged samples as required by the 
MLP system. The underlying principle of CBR is by far nearer 
to human learning process in this particular environment and 
suits the practical implementation of the scheme perfectly.  

In CBR, an overall raise in rejection of genuine signatures 
may well be a cause of concern. To rectify this situation, our 
future endeavor would be oriented towards utilizing a more 
refined feature space from the input data. Higher complexities 
incurred therein may require improved indexing and data 
mining techniques, opening a vista of future research work in 
CBR. 
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